Pacovatinins A–C, New Labdane Diterpenoids from the Seeds of *Renealmia* exaltata

Mitsuhiro Sekiguchi,[†] Hideyuki Shigemori,[†] Ayumi Ohsaki,^{*,‡} and Jun'ichi Kobayashi^{*,†}

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan

Received February 23, 2001

Three new labdane diterpenoids, pacovatinins A-C (1-3), were isolated from seeds of the Brazilian medicinal plant Renealmia exaltata ("Pacová-catinga"), and their structures including absolute configurations were elucidated by spectroscopic data and a modified Mosher method.

Brazilian medicinal plants have proven to be a rich source of compounds that might be useful for the development of new pharmaceutical agents.¹ In our search for structurally unique compounds from Brazilian medicinal plants, chapecoderins A-C², labdane-derived diterpenoids, and echinophyllins A-F,^{3,4} nitorogen-containing clerodane diterpenoids, have been isolated from the leaves of Echinodorus macrophyllus. Recent investigation on extracts from seeds of the Brazilian medicinal plant Renealmia exaltata led to the isolation of three new labdane diterpenoids, pacovatinins A-C (1-3). This plant is known in Brazil as "Pacová-catinga" and used as a stomachic and a vermifuge. In this paper we describe the isolation and structure elucidation of 1-3.

Seeds of Renealmia exaltata L.f. (Zingiberaceae) were extracted with MeOH. The MeOH extracts were partitioned between hexane and 90% aqueous MeOH, and the aqueous MeOH layer was partitioned with EtOAc and H₂O. The EtOAc-soluble portions were subjected to a Si gel column (CHCl₃-MeOH, 98:2) followed by a reversed-phase C₁₈ column (MeOH-H₂O, 80:20) and reversed-phase C₁₈ HPLC (MeOH $-H_2O$, 50:50) to afford pacovatinins A (1, 0.0071%), B (2, 0.00095%), and C (3, 0.00026%).

The molecular formula, $C_{20}H_{30}O_3$, of pacovatinin A (1) was established by HRFABMS $[m/z 319.2276 (M + H)^+, \Delta$ +0.3 mmu]. The IR spectrum suggested the presence of hydroxy (3428 cm⁻¹) and unsaturated lactone carbonyl (1752 and 1675 cm⁻¹) groups, while the UV absorption at 226 nm also supported that 1 possessed an unsaturated lactone moiety. The gross structure of 1 was deduced from detailed analysis of the ¹H and ¹³C NMR data (Table 1) aided with 2D NMR experiments (1H-1H COSY, HMQC, and HMBC). The ¹³C NMR data indicated that the molecule possessed one unsaturated ester carbonyl, one trisubstituted olefin, one exomethylene, two sp³ quaternary carbons, seven methylenes (one of them bearing an oxygen atom), three methines (one of them bearing an oxygen atom), and three methyl groups. Since four of six unsaturations were thus accounted for, it was suggested that 1 contained two rings. The ¹H-¹H COSY spectrum revealed connectivities of C-1 to C-3, C-5 to C-7, C-9 to C-12, and C-14 to C-15. HMBC correlations (Figure 1) of H₃-18 and H₃-19 to C-3, C-4 (δ_{C} 34.4), and C-5 (δ_{C} 54.1) and H₃-20 to C-1, C-5, and C-10 ($\delta_{\rm C}$ 40.1) suggested the presence of a cyclohexane ring while those of H₂-17 to C-7 and C-9 ($\delta_{\rm C}$ 55.7) and H₂-6 to C-8 ($\delta_{\rm C}$ 151.6) indicated the presence of another cyclohexane ring (ring B) with an exomethylene (C-17) at C-8. A hydroxy group was connected to C-7, judging from the chemical shift ($\delta_{\rm C}$ 74.2) of C-7. HMBC correlations of H₂-15 to C-13 ($\delta_{\rm C}$ 126.7) and C-16 ($\delta_{\rm C}$ 173.6), H-12 to C-14 and C-16, and H₂-11 to C-13 revealed the presence of a γ -lactone ring (C-13–C-15, C-16, and O-15) connected to C-12 ($\delta_{\rm C}$ 142.6). Geometry of the trisubstituted olefin at C-12 was elucidated to be E from the NOESY correlation between H-11b and H₂-14 (Figure 2). Thus, the gross structure of pacovatinin A was elucidated to be 1. NOESY correlations of H₃-20 to H-2a and H-6b, and H-5 to H-3a, indicated β -orientation of Me-20, α -orientation of H-5, and a *trans* relationship between Me-20 and H-5. Both α -orientations of H-7 and H-9 were deduced from NOESY correlations of H-5 to H-7, H-7 to H-9, and H₃-20 to H-11a. Chair conformations of rings A and B were also elucidated from other NOESY correlations, as shown in Figure 2. The absolute configuration at C-7 of 1 was determined by a modified Mosher method⁵ as follows. Treatment of **1** with (*R*)-(-)- and (*S*)-(+)-2-methoxy-2-trifluoromethylphenylacetyl chloride (MTPACl) afforded the corresponding (S)-(-)- and (R)-(+)-MTPA esters (4 and 5, respectively). The values of $\Delta \delta$ [δ (*S*-MTPA ester) – δ (*R*-MTPA ester)] in the ¹H NMR (Figure 3) spectra suggested that the absolute configuration at C-7 of 1 was S. Thus, the structure of pacovatinin A was assigned as 1.

(ring A) with Me-18 and Me-19 at C-4 and Me-20 at C-10,

The molecular formula, $C_{20}H_{30}O_4$, of pacovatinin B (2) was established by HRFABMS [m/z 335.2211 (M + H)⁺, Δ -1.1 mmu], indicating that **2** was an oxygenated form of 1. The ¹³C NMR data indicated that 2 possessed one unsaturated ester carbonyl, one trisubstituted olefin, one exomethylene, two sp³ quaternary carbons, six methylenes (one of them bearing an oxygen atom), four methines (two of them bearing an oxygen atom), and three methyl groups. ¹H and ¹³C NMR data of **2** were similar to those of **1**. Comparison of the ¹H and ¹³C NMR spectra of **2** with those of **1** revealed that a methylene ($\delta_{\rm H}$ 1.43 and 1.21, H₂-3; $\delta_{\rm C}$ 43.1, C-3) in **1** was replaced by an oxymethine ($\delta_{\rm H}$ 3.28, H-3; $\delta_{\rm C}$ 78.4, C-3) in **2**. The presence of a hydroxy group at C-3 was deduced from the ¹H-¹H COSY correlation of H₂-2 to H-3 and HMBC correlations (Figure 4) of H₃-18 and H₃-19 to C-3. HMBC correlations of H₂-15 to C-13 ($\delta_{\rm C}$ 124.9) and C-16 (δ_{C} 170.8), H-12 to C-14 and C-16, and H₂-11 to C-13 revealed the presence of a γ -lactone ring (C-13–C-15, C-16, and O-15) connected to C-12 ($\delta_{\rm C}$ 140.9). NOESY

10.1021/np010097i CCC: \$20.00 © 2001 American Chemical Society and American Society of Pharmacognosy Published on Web 07/26/2001

^{*} To whom correspondence should be addressed. Tel: +81-11-706-4985. Fax: +81-11-706-4989. E-mail: jkobay@pharm.hokudai.ac.jp (J.K.). Tel: +81-3-5280-8153. Fax: +81-3-5280-8005. E-mail: a-ohsaki.fm@tmd.ac.jp (A.O.).

[†] Hokkaido University. [‡] Tokyo Medical and Dental University.

correlations (Figure 5) of H₃-20 to H-2a and H-6b, and H-5 to H-3a, indicated β -orientation of Me-20, α -orientation of H-5, and a *trans* relationship between Me-20 and H-5. The α -orientations of H-3, H-7, and H-9 were deduced from NOESY correlations of H-3 to H-5, H-5 to H-7, H-7 to H-9, and H₃-20 to H-11a. Geometry of the trisubstituted olefin at C-12 was elucidated to be *E* from the NOESY correlation between H-11b and H₂-14. Treatment of **2** with (*R*)-(-)- and (*S*)-(+)-MTPACl afforded the corresponding bis-(*S*)-(-)- and bis-(*R*)-(+)-MTPA esters (**6** and **7**, respectively). The values of $\Delta\delta$ [δ (*S*-MTPA ester) – δ (*R*-MTPA ester)] in the ¹H NMR (Figure 6) spectra suggested that the absolute configurations at C-3 and C-7 of **2** were both *S*. Thus, the structure of pacovatinin B was assigned as **2**.

Pacovatinin C (3) showed the pseudomolecular ion peak at m/z 333 (M + H)⁺ in the FABMS. HRFABMS analysis revealed the molecular formula to be $C_{20}H_{28}O_4$ [m/z 355.1884 $(M + Na)^+ \Delta -0.2$ mmu]. IR absorptions implied that 3 possessed hydroxyl (3430 cm⁻¹), unsaturated lactone (1742 and 1645 cm⁻¹), and ketone (1732 cm⁻¹) groups. Analysis of the ¹H and ¹³C NMR data and the HMQC spectrum provided one unsaturated ester carbonyl, one ketone carbonyl, one trisubstituted olefin, one exomethylene, two sp³ quaternary carbons, six methylenes (one of them bearing an oxygen atom), three methines (one of them bearing an oxygen atom), and three methyl groups. ¹H and ¹³C NMR data of 3 were similar to those of 2 except for a functional group at C-3. Detailed analysis of the ¹H-¹H COSY spectrum (Figure 7) implied connectivities of C-1 to C-2, C-5 to C-7, C-9 to C-12, and C-14 to C-15. HMBC correlations (Figure 7) of H₃-18 and H₃-19 to C-4 and C-5 ($\delta_{\rm C}$ 52.0), H_2 -17 to C-7 and C-9, H_3 -20 to C-1, C-5, C-9, and C-10 (δ_C 38.3) and the chemical shifts ($\delta_{\rm H}$ 2.64 and 2.45, H₂-2; $\delta_{\rm C}$ 33.2, C-2) indicated that **3** possessed a decaline skeleton with a ketone at C-3, Me-18 and Me-19 at C-4, a hydroxy group at C-7, an exomethylene at C-8, and Me-20 at C-10. HMBC correlations of H₂-15 to C-13 ($\delta_{\rm C}$ 125.0) and C-16 (δ_{C} 169.9), H-12 to C-14 and C-16, and H₂-11 to C-13 revealed the presence of a γ -lactone ring (C-13–C-15, C-16, and O-15) connected to C-12 ($\delta_{\rm C}$ 139.8). Geometry of the trisubstituted olefin at C-12 was elucidated to be Z from the NOESY correlation between H-12 and H₂-14 (Figure 8). The relative stereochemistry of 3 was deduced from NOESY correlations. Thus, the structure of pacovatinin C was elucidated to be 3.

Pacovatinins A–C (1–3) are the first labdane diterpenoids possessing a γ -lactone conjugated with an *exo*-olefin group from *Renealmia exaltata*, although some labdane diterpenoids have been reported from other species of the genus *Renealmia*.^{6,7} It is noted that the double bonds at C-12 in 1 and 2 are both *E*, while that of 3 is *Z*. Pacovatinins A (1) and C (3) exhibited cytotoxicity⁸ against murine lymphoma L1210 cells with IC₅₀ values of 3.2 and 4.7 µg/mL, respectively, and human epidermoid carcinoma KB cells with IC₅₀ values of 9.8 and 7.3 µg/mL, respectively, while pacovatinin B (2) showed no cytotoxicity (IC₅₀ >10 µg/mL).

Experimental Section

General Experimental Procedures. Optical rotations were determined on a JASCO P-1030 polarimeter. UV and IR spectra were obtained on JASCO Ubest-35 and JASCO FT/IR-230 spectrometers, respectively. ¹H and ¹³C NMR spectra were recorded on a Bruker ARX-500 spectrometer. The 3.35 and 49.8 ppm resonances of residual CD₃OD and the 7.26 and 77.0 ppm resonances of residual CDCl₃ were used as internal references for ¹H and ¹³C NMR spectra, respectively. FAB mass spectra were measured on a JEOL HX-110 spectrometer using a glycerol matrix.

Plant Material. Seeds of *Renealmia exaltata* ("Pacovácatinga") were purchased in São Paulo, Brazil, in March 2000. The plant was identified by Dr. G. Hashimoto (Centro de Pesquisas de História Natural, São Paulo, Brazil), and a voucher specimen has been deposited at the Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University.

Extraction and Separation. Seeds (420 g) were extracted with MeOH (500 mL \times 3), and the extracts partitioned between hexane (500 mL \times 3) and 90%MeOH (500 mL). The MeOH layer was partitioned with EtOAc (500 mL \times 3) and H₂O (50 mL). The EtOAc-soluble portions (4.2 g) were subjected to Si gel column chromatography (CHCl₃–MeOH, 98: 2) to afford fraction I (1.7 g). This fraction was purified by a

Table 1. ¹H and ¹³C NMR Data of Pacovatinins A (1), B (2), and C (3)

	1 ^{<i>a</i>}		2^{b}		3^{b}	
position	$^{1}\mathrm{H}^{c}$	$^{13}C^{c}$	$^{1}\mathrm{H}^{c}$	$^{13}C^{c}$	$^{1}\mathrm{H}^{c}$	¹³ C ^c
1 (a)	1.74 (m)	40.2	1.73 (m)	36.8	1.99 (m)	36.5
1 (b)	1.13 (dt, 3.7 12.8)		1.18 (m)		1.60 (m)	
2 (a)	1.65 (m)	20.4	1.57 (m)	27.4	2.64 (m)	33.2
2 (b)	1.53 (m)		1.15 (m)		2.45 (m)	
3 (a)	1.43 (m)	43.1	3.28 (dd, 12.0 4.3)	78.4		213.0
3 (b)	1.21 (m)					
4		34.4		38.8		38.8
5	1.23 (m)	54.1	1.16 (m)	51.7	1.71 (m)	52.0
6 (a)	2.04 (m)	34.5	2.13 (ddd, 9.5 5.4 2.4)	32.7	2.06 (ddd, 9.5 5.4 2.4)	33.7
6 (b)	1.26 (m)		1.37 (m)		1.47 (m)	
7	3.94 (m)	74.2	4.02 (dd, 11.3 5.5)	73.2	4.04 (m)	72.2
8		151.6		149.5		148.1
9	1.86 (m)	55.7	1.79 (m)	53.7	1.88 (m)	52.9
10		40.1		39.1		38.3
11 (a)	2.45 (m)	26.2	2.36 (m)	24.9	2.38 (m)	25.3
11 (b)	2.37 (m)		2.36 (m)		2.38 (m)	
12	6.61 (m)	142.6	6.64 (dt, 9.2 6.0)	140.9	6.65 (m)	139.8
13		126.7		124.9		125.0
14	2.93 (m)	26.1	2.87 (m)	25.3	2.88 (m)	26.1
15	4.38 (t, 7.4)	67.3	4.38 (t, 7.2)	65.1	4.39 (t, 7.2)	63.8
16		173.6		170.8		169.9
17 (a)	5.23 (s)	105.0	5.22 (s)	104.4	5.30 (s)	105.0
17 (b)	4.60 (s)		4.60 (s)		4.66 (s)	
18	0.92 (s)	34.0	1.05 (s)	28.2	1.14 (s)	25.5
19	0.85 (s)	22.2	0.80 (s)	15.3	1.05 (s)	20.9
20	0.75 (s)	14.9	0.73 (s)	14.4	0.91 (s)	13.7

^{*a*} In CD₃OD. ^{*b*} In CDCl₃. ^{*c*} δ in ppm.

Figure 1. Selected 2D NMR data of pacovatinin A (1).

Figure 2. Relative stereochemistry of pacovatinin A (1). Dotted arrows denote NOESY correlations.

C₁₈ columun (Cosmosil ODS, MeOH–H₂O, 80:20) to give pacovatinin A (30 mg) and fraction II (137 mg). This fraction was subjected to a Si gel column (hexane–acetone, 2:1) to give fraction III, which was purified by reversed-phase HPLC [Develosil ODS HG-5, Nomura Chemical, 1×25 cm, flow rate 2.5 mL/min; MeOH–H₂O (1:1) to give pacovatinins B (**2**, $t_{\rm R}$ 21.6 min, 4.0 mg) and C (**3**, $t_{\rm R}$ 16.0 min, 1.1 mg).

Pacovatinin A (1): a colorless amorphous solid; $[\alpha]^{23}_{D}$ +10.0° (*c* 1.00, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 226 (4.00) and

Figure 3. ¹H NMR chemical shift differences ($\Delta \delta$) for MTPA esters of pacovatinin A (1); $\Delta \delta$ (ppm) = δ [(*S*)-MTPA ester (4)] - δ [(*R*)-MTPA ester (5)].

205 (3.91) nm; IR (KBr) ν_{max} 3428, 1752, and 1675 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m*/*z* 319 (M + H)⁺; HRFABMS *m*/*z* 319.2276 (M + H)⁺ (calcd for C₂₀H₃₁O₃, 319.2273).

Pacovatinin B (2): a colorless amorphous solid; $[α]^{23}{}_{\rm D}$ +5.9° (*c* 1.00, CHCl₃); UV (MeOH) $λ_{\rm max}$ (log ϵ) 229 (4.03) and 209 (3.84) nm; IR (KBr) $\nu_{\rm max}$ 3429, 1744, and 1645 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m*/*z* 335 (M + H)⁺; HRFABMS *m*/*z* 335.2211 (M + H)⁺ (calcd for C₂₀H₃₁O₄, 335.2222).

Pacovatinin C (3): a colorless amorphous solid; $[\alpha]^{23}_{D} + 8.9^{\circ}$ (*c* 0.50, MeOH); UV (MeOH) λ_{max} (log ϵ) 227 (4.02) and 208 (3.88) nm; IR (KBr) ν_{max} 3430, 1742, 1732, and 1645 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m*/*z* 355 (M + Na)⁺; HR-FABMS *m*/*z* 355.1884 (M + Na)⁺ (calcd for C₂₀H₂₈O₄Na, 355.1886).

(*S*)- and (*R*)-MTPA Esters (4 and 5) of Pacovatinin A (1). Two aliquots of pacovatinin A (1) (each 0.5 mg) were separately esterified with (*R*)-(–)- and (*S*)-(+)-MTPACl (each $0.9 \ \mu$ L), DMAP (0.01 mg), and Et₃N (0.7 \ \muL) in CH₂Cl₂ (50 \ \muL) at room temperature for 3.5 h, and then *N*,*N*-dimethyl-1,3propanediamine (2 \ \muL) was added to the reaction mixture and stirring was continued for 10 min. The reaction mixture was

Figure 4. Selected 2D NMR data of pacovatinin B (2).

Figure 5. Relative stereochemistry of pacovatinin B (2). Dotted arrows denote NOESY correlations.

Figure 6. ¹H NMR chemical shift differences ($\Delta \delta$) for MTPA esters of pacovatinin B (**2**); $\Delta \delta$ (ppm) = δ [(*S*)-MTPA ester (**6**)] - δ [(*R*)-MTPA ester (**7**)].

partitioned with CHCl₃ (100 μ L × 3) and H₂O (100 μ L), and the CHCl₃ layer was evaporated. The residue was purified by a silica gel column (hexane–acetone, 4:1) to give the (*S*)- and (*R*)-MTPA esters (**4**, 0.5 mg, and **5**, 0.8 mg, respectively) of **1**.

Compound 4: ¹H NMR (CDCl₃) δ 1.70 (1H, m, H-1a), 1.07 (1H, m, H-1b), 1.58 (2H, m, H-2), 1.46 (1H, m, H-3a), 1.22 (1H, m, H-3b), 1.24 (1H, m, H-5), 2.15 (1H, m, H-6a), 1.34 (1H, m, H-6b), 5.35 (1H, m, H-7), 1.88 (1H, m, H-9), 2.42 (1H, m, H-11a), 2.28 (1H, m, H-11b), 6.68 (1H, m, H-12), 2.87 (2H, m, H-14), 4.39 (2H, m, H-15), 5.08 (1H, s, H-17a), 4.55 (1H, s, H-17b), 0.92 (3H, s, H-18), 0.80 (3H, s, H-19), and 0.72 (3H, s, H-20); FABMS *m*/*z* 557 (M + Na)⁺; HRFABMS *m*/*z* 557.2538 (M + Na)⁺ (calcd for C₃₀H₃₇O₅F₃Na, 557.2491).

Compound 5: ¹H NMR (CDCl₃) δ 1.70 (1H, m, H-1a), 1.07 (1H, m, H-1b), 1.59 (2H, m, H-2), 1.46 (1H, m, H-3a), 1.22 (1H, m, H-3b), 1.25 (1H, m, H-5), 2.15 (1H, m, H-6a), 1.49 (1H, m, H-6b), 5.38 (1H, m, H-7), 1.87 (1H, m, H-9), 2.41 (1H, m, H-11a), 2.25 (1H, m, H-11b), 6.67 (1H, m, H-12), 2.85 (2H, m,

Figure 7. Selected 2D NMR data of pacovatinin C (3).

Figure 8. Relative stereochemistry of pacovatinin C (3). Dotted arrows denote NOESY correlations.

H-14), 4.38 (2H, m, H-15), 4.82 (1H, s, H-17a), 4.46 (1H, s, H-17b), 0.92 (3H, s, H-18), 0.83 (3H, s, H-19), and 0.73 (3H, s, H-20); FABMS m/z 557 (M + Na)⁺; HRFABMS m/z 557.2464 (M + Na)⁺ (calcd for $C_{30}H_{37}O_5F_3Na$, 557.2491).

Bis-(S)- and Bis-(*R***)-MTPA Esters (6 and 7) of Paco-vatinin B (2)**. Two aliquots of pacovatinin B (2) (each 0.5 mg) were separately esterified with (*R*)-(-)- and (*S*)-(+)-MTPACI (each 1.2 μ L), DMAP (0.01 mg), and Et₃N (0.7 μ L) in CH₂Cl₂ (50 μ L) at room temperature for 3.5 h, and then *N*,*N*-dimethyl-1,3-propanediamine (2 μ L) was added to the reaction mixture and stirring was continued for 10 min. The reaction mixture was partitioned with CHCl₃ (100 μ L × 3) and H₂O (100 μ L), and then the CHCl₃ layer was evaporated. The residue was purified by a silica gel column (hexane–acetone, 4:1) to give the bis-(*S*)- and bis-(*R*)-MTPA esters (**6**, 0.8 mg, and **7**, 0.8 mg, respectively) of **2**.

Compound 6: ¹H NMR (CDCl₃) δ 1.77 (1H, m, H-1a), 1.33 (1H, m, H-1b), 1.90 (1H, m, H-2a), 1.64 (1H, m, H-2b), 4.72 (1H, m, H-3), 1.44 (1H, m, H-5), 2.14 (1H, m, H-6a), 1.38 (1H, m, H-6b), 5.35 (1H, m, H-7), 1.87 (1H, m, H-9), 2.37 (1H, m, H-11a), 2.28 (1H, m, H-11b), 6.66 (1H, m, H-12), 2.87 (2H, m, H-14), 4.40 (2H, m, H-15), 5.11 (1H, s, H-17a), 4.56 (1H, s, H-17b), 0.93 (3H, s, H-18), 0.78 (3H, s, H-19), and 0.74 (3H, s, H-20); FABMS *m*/*z* 789 (M + Na)⁺; HRFABMS *m*/*z* 789.2806 (M + Na)⁺ (calcd for C₄₀H₄₄O₈F₆Na, 789.2838).

Compound 7: ¹H NMR (CDCl₃) δ 1.81 (1H, m, H-1a), 1.35 (1H, m, H-1b), 1.97 (1H, m, H-2a), 1.77 (1H, m, H-2b), 4.76 (1H, m, H-3), 1.36 (1H, m, H-5), 2.12 (1H, m, H-6a), 1.54 (1H, m, H-6b), 5.37 (1H, m, H-7), 1.87 (1H, m, H-9), 2.38 (1H, m, H-11a), 2.27 (1H, m, H-11b), 6.65 (1H, m, H-12), 2.86 (2H, m, H-14), 4.39 (2H, m, H-15), 4.88 (1H, s, H-17a), 4.50 (1H, s, H-17b), 0.86 (3H, s, H-18), 0.79 (3H, s, H-19), and 0.82 (3H, s, H-20); FABMS *m*/*z* 789 (M + Na)⁺; HRFABMS *m*/*z* 789.2832 (M + Na)⁺ (calcd for C₄₀H₄₄O₈F₆Na, 789.2838).

Acknowledgment. We thank Dr. G. Hashimoto (Centro de Pesquisas de História Natural, São Paulo, Brazil) for identification of this plant and Mr. T. Sakai (JICA São Paulo, São Paulo, Brazil) for supplying the plant material. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

- Ohsaki, A.; Takashima, J.; Chiba, N.; Kawamura, M. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1109–1112.
 Kobayashi, J.; Sekiguchi, M.; Shigemori, H.; Ohsaki, A. *J. Nat. Prod.* **2000**, *63*, 375–377.
 Kobayashi, J.; Sekiguchi, M.; Shigemori, H.; Ohsaki, A. *Tetrahedron Lett.* **2000**, *41*, 2939–2943.

- (4) Kobayashi, J.; Sekiguchi, M.; Shimamoto, S.; Shigemori, H.; Ohsaki,
- (4) Kobayashi, J., Sekiguchi, M., Shinahido, S., Shigehoff, H., Olisaki, A. J. Nat. Prod. 2000, 63, 1576–1579.
 (5) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4095.
 (6) Yang, S.-W.; Zhou, B.-N.; Malone, S.; Werkhoven, M. C. M.; van Troon, F.; Wisse, J. H.; Kingston, D. G. I. J. Nat. Prod. 1999, 62, 1173–1174 1174.
- Bohlmann, F.; Zdero, C.; Gupta, R. K.; King, R. M.; Robinson, H. *Phytochemistry* **1980**, *19*, 2695–2705.
 Carmichawl, J.; Degaff, W. G.; Gazder, A. F.; Minna, J. D.; Mitchell, J. B. *Cancer Res.* **1987**, *47*, 936–942.

NP010097I